

Tracking the Weight of Hurricane Harvey's Stormwater using GPS

Chris Milliner, JPL, Caltech – NPP Postdoc

Materna, K., UC Berkeley Burgmann, R., UC Berkeley Fu, Y., Bowling Green Bekaert, D., JPL, Caltech Moore, A., JPL, Caltech Adhikari, S., JPL, Caltech Argus, D., JPL, Caltech

Introduction

- Question: How does stormwater accumulate and dissipate on land following a major hurricane?
 - What happens to stormwater once deposited?
- Method: Use GPS positioning to measure solid Earth's elastic surface response to water mass → this can be used to track the daily evolution of TWS
 - TWS = standing surface water, absorbed into soil + ground water.
- Motivation: Quantifying TWS important for:
 - Understanding: important component of hydrologic system, difficult to measure.
 - **Applications**: constraining hydrologic simulations → operational flood forecasts

Background

```
Cat 4 event — hit US mainland August 26<sup>th</sup>, lasted 7 days
Wettest recorded US hurricane
Total rainfall: ~95 km³
~1.54 m of cumulative rain recorded east of Houston.
Landfall in south Texas → stalled → retreated → 2<sup>nd</sup> landfall Louisiana → Ms, Tn
```

NOAA - Stage IV

Elastic Earth

- Main idea: Water loads Earth's elastic crust -> surface deformation.
- Challenge: Resolving hydrologic loading from noisy (WRMS 6 mm) GPS timeseries.
 - Long timescales (monthsseasons) to characterize loading.
- Is GPS positioning precision sufficient to resolve Harvey's transient loading signature?

GPS Data

- Total of 219 GPS stations
 - East, north and vertical
- Data processed using JPL's GIPSY-OASIS II, in PPP.
- Average spacing ~30 km
- Correct for:
 - tidal ocean loading
 - solid Earth body tides
 - non-tidal ocean & atmospheric pressure changes

Non-tidal atmosphere + ocean loading (IERS/GFZ)

Black = data
Red = correction
Green = landfall of Harvey

- Corrections for nontidal atmospheric loading + ocean loading
- Effect of atmospheric pressure changes unloading-loading surface.
- ATMOS: RMS average reduction =up to ~20%
- NTOL RMS reduction up to 10% near-shore

ICA - Independent Component Analysis

-X(t)

- GPS vertical is noisiest component → ICA to extract hydro signal
- ICA identifies and un-mixes sources across the GPS network of maximum independence (Hyvärinen & Oja, 2000).
- Data timeseries = linear combination of time-varying independent components with spatial weight
- **CME** = network wide motions due to inaccuracies in:

Mixing Matrix A

satellite orbits

-S(t)

Tropospheric/ atmospheric models.

Synthetic tests – ICA vs PCA

How many components to decompose data? - Stopping rules

"North's rule of thumb": Measure of seperability Idea: Assess which eigenvalues exceed that expected from a random process:

1. If uncert. exceeds separation, then component is deemed difficult to separate from its neighbor and from noise.

Horn's Parallel Analysis

- Randomly scramble the data → suite of random samples and eigenspectra with 95% CI.
- If eigenvalue > 95% of eigenvalues from random data then component is retained.

ICA filtering

- Components ordered in amount of motion explained.
- CME shows ~10 mm of subsidence, second landfall not detected.
- Hydrologic signal mixed onto first component

- Instead we estimate 'CME' from a subset of stations, distal from known precipitation
- Assume this CME is uniform across network

Comparing CME estimates

Red = CME from entire network

Blue = CME from subset of stations

Green = Landfall

- Above: Difference between two CME estimates
- Marked subsidence coincident with Harvey landfall (red line)
- Followed by gradual uplift
- Suggests hydrologic signal is mixed with CME

East component (after CME removed)

Coincident with initial landfall

Coincident with second landfall

North component (after CME removed)

Filtered data

- PCA and ICA give similar results.
- Marked subsidence coincident with Harvey
- Return to pre-Harvey positions after ~5 weeks

- Blue = raw
- Red = ICA
- Black = PCA
- Green = Harvey landfall

Data horizontals

North

- Red = ICA
- Black = PCA
- **Green = Harvey landfall**

Aug 01 Aug 15 Aug 29 Sep 12 Sep 26 Oct 10 Oct 24

Hydrologic signal: ICA filter Area of second landfall Houston 200 km Corpus Christi

Hydrologic signal: Coincident with initial landfall Marked subsidence, gradual uplift

Hydrologic

Area of known

precipitation

signal:

3rd component, a linear trend Groundwater extraction

Hydrologic signal: Coincident with second landfall Marked subsidence, gradual uplift

Filtered timeseries

- RMS reduction of ~75%
- Vertical: Up to 21 mm vertical subsidence.
- Horizontal: Up to ~5 mm in horizontal direction.

Invert GPS displacement → water mass

- Use all 3 components of motion
- Calculate water mass 25 km grid nodes.
- Green's functions relate GPS subsidence to water mass (Farrell, 1972; Adhikari et al., 2016).
 - Relates loading of a disk of unit thickness to surface motion.

$$\begin{bmatrix} WG_v \\ WG_u \\ WG_u \\ \lambda S \\ \beta U \end{bmatrix} [m_t] = \begin{bmatrix} Wd_t^v \\ Wd_t^e \\ Wd_t^n \\ 0 \\ \beta Um_{t-1} \end{bmatrix}$$

Poroelastic effects?

River discharge

Validation

- NLDAS National Land Data Assimilation model – hydrologic model driven by:
 - observed precipitation.
 - Shortwave radiation.
- Simulates TWS hourly and at 1/8° degree

Well head water levels are inconsistent with poroelastic motions

USGS water volume measured at Barker and Addicks Reservoirs vs our TWS estimate

Hydrologic response

- Knowing amount stored, can estimate amount 'not stored' → direct runoff + groundwater
- Indicates 60% of Harvey's stormwater was lost as initial pulse within first 7 days, at ~9 km³/day.
- Surface runoff + groundwater flow (cyan) is ~3x that measured in river gauges (purple).

Validation

Images show the SMAP observations which detects the proportion of the ground covered by surface water within the satellite's field of view.

NLDAS – data assimilation hydrologic model.

Smoothing contraints - POVR

Model uncertainty

Conclusions

- 1. ICA filter can remove systematic bias helping resolve daily changes in water loading.
- 2. GPS shows up to 20 mm of subsidence, migrating land subsidence, followed by gradual uplfit
- **3.** Inverting GPS → daily water mass:
 - flooding extent
 - 2. rate of recovery storage capacity of system
- 4. TWS from GPS gives insight into:
 - how hydrologic system responds to large influxes of water
 - 2. Existing missions measuring water storage.